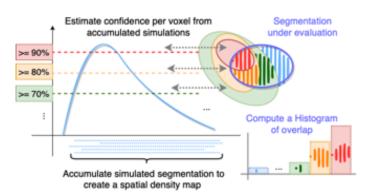
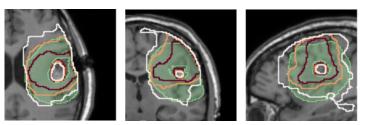

A distribution of auto-generated simulation of segmentation provides a richer comparison basis to evaluate expert human-segmentation than currently used binary overlap metrics

Automating QA for Radiation Therapy

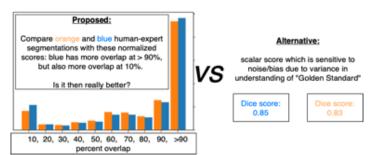
Amith Kamath^a, Robert Munger^a, Robert Poel^b, Elias Rufenacht^a, Alain Jungo^a, Ekin Ermis^a, Jonas Willmann^c, Nicolaus Andratschke^c, Mauricio Reyes^a


1 Why QA?

Even among experts, there is significant variability in contouring Tumors (CTV shown above) and Organs at Risk.


Hence, Radio-oncologists spend considerable time in manual QA: this cannot scale for large studies, and calls for automation!

2 Simulate realistic variability



Use Deep Networks to simulate variability among human-expert segmentation: provide ability to generate more detailed evaluations.

3 Early Unpublished Results

Contours (for CTV) with several levels of confidence (red: > 90%, orange: > 50%, white: > 10%) generated to compare with the test-segmentation (in green).

Information-rich metrics, rather than scalars like Dice coefficient or Hausdorff distance could aid in better and automated QA. Using these ideas, we intend to build a tool for segmentation Quality Assurance for Radio-therapy.

Affiliations ^a: ARTORG Center, Uni BE, ^b: Inselspital, Uni BE, ^c: Universitatspital Zurich, UZH **Abbreviations**

CTV: Clinical Target Volume QA: Quality Assurance

ebsliga schweiz ue suisse contre le cancer Ja svizzera contro il cancro

UNIVERSITÄT BERN