How do 3D image segmentation networks behave across the context versus foreground ratio trade-off?

Research Question:

There's a trade-off in image segmentation models between large patch sizes: higher context, but smaller foregroundto-background ratios (FBR) and small patch sizes (low context, higher FBR).

We aim to explore: How do Vanilla-Unet, UNETR, and Attention-Unet behave across patch-size choices?

Experimental Setup:

Synthetic data: 100 volumes of size 96³ voxels. Background: random noise, variance 0.8. Foreground: random white spheres with radius 25-30, random centers. 70 training, 30 test, 100 completely independent samples with out-oftraining radii (5-48) for test.

Clinical data: Spleen data set from Medical Segmentation Decathlon. 26 training, 5 validation, and 10 test.

Models: Vanilla-Unet, UNETR, Attention-Unet with default settings using MONAI.

UNIVERSITÄT

Experiments: Train with five patch sizes [32, 48, 64, 80, 96]; evaluate DSC for each patch size * data set * model.

Dice Similarity Coefficient metrics for the synthetic task: using Vanilla-Unet (left), UNETR (middle), and Attention-Unet (right). Distributions at the bottom indicate proportion of training samples with that FBR during training. Only patch sizes 32, 64, 96 shown for clarity.

Amith Kamath^{1,*}, Yannick Suter¹, Suhang You¹, Michael Müller¹,

Jonas Willmann^{2,3}, Nicolaus Andratschke², Mauricio Reyes¹

¹ ARTORG Center for Biomedical Engineering Research, University of Bern

- ² University Hospital Zurich, University of Zurich
- ³ Center for Proton Therapy, Paul Scherrer Institute
- * amith.kamath@unibe.ch

Results:

Network	PatchSize: 32	PatchSize: 48	PatchSize: 64	PatchSize: 80	PatchSize: 96
Unet (in-train) drop outside	0.981 (0.024) -	0.986 (0.016) -	0.994 (0.001) $\Delta = -0.0234$	0.994 (0.001) $\Delta = -0.0139$	0.993~(0.001) $\Delta = -0.0178$
UNETR (in-train) drop outside	0.677 (0.350) -	0.643 (0.390) –	$\begin{array}{l} 0.957\ (0.121)\\ \Delta = -0.733 \end{array}$	0.991 (0.009) $\Delta = -0.369$	0.994 (0.003) $\Delta = -0.275$
Att-Unet (in-train) drop outside	0.632 (0.342)	0.663 (0.373)	0.948 (0.132) $\Delta = -0.836$	0.992 (0.004) $\Delta = -0.299$	0.970~(0.015) $\Delta = -0.255$

Dice Similarity Coefficient metrics for the Spleen task: using Vanilla-Unet (left), UNETR (middle), and Attention-Unet (right). Distributions at the bottom indicate proportion of training samples with that FBR during training - note that these cover all the test samples in this case.

Network	PatchSize: 32	PatchSize: 48	PatchSize: 64	PatchSize: 80	PatchSize: 96
Unet	0.721 (0.130)	0.907 (0.045)	0.928 (0.040)	0.922 (0.047)	0.932 (0.042)
UNETR	0.481 (0.158)	0.766 (0.178)	0.799 (0.186)	0.852 (0.116)	0.915 (0.042)
Att-Unet	0.086 (0.052)	0.102 (0.060)	0.384 (0.313)	0.582 (0.326)	0.634 (0.327)

Dice Similarity Coefficient metrics for the Spleen task: note, Vanilla-Unet is the best performing across all patch sizes.

Findings (see red circles for supporting details):

References

See full list of references by scanning the QR code on the right.

Dice Similarity Coefficient metrics for the synthetic task: note the drop in DSC outside the "training distribution" range for **UNETR and Attention-Unet.**

Larger patch sizes are preferred across all three network architectures,

UNETR and Attention-Unet appear to be more sensitive to patch size changes,

Ensuring a wide range in FBR during training is a prerequisite for robustness.

krebsliga schweiz ligue suisse contre le cancer lega svizzera contro il cancro